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a b s t r a c t

This paper describes an application of multivariate and multilevel quality control charts with the aim
of improving the internal quality control (IQC) procedures for the monitoring of dioxins and dioxin-like
PCBs analysis in food. Dioxin analysts have to use the toxic equivalent concept (TEQ) to assess the toxicity
potential of a mixture of dioxin-like compounds. The TEQ approach requires quantifying individually 29
dioxin-like compounds. Monitoring the congeners separately on univariate QC charts is misleading owing
to the increase of false alarm rate. We propose to subdivide the TEQ value into 3 sub-groups and to control
simultaneously the 3 variables in a T2 chart. When a T2 exceeds the upper control limit, it acts as a warning
to trigger additional investigations on individual congeners. We discuss the minimum number of runs
EWMA)
easurement uncertainty

olychlorinated dibenzo-p-dioxin (PCDDs)
olychlorinated dibenzofurans (PCDFs)
olychlorinated biphenyls (PCBs)

required to reliably estimate the QC chart parameters and we suggest using data from multilevel QC charts
to properly characterize the standard deviations and the correlation coefficients. Moreover, the univariate
QC chart can be sensitised to detect systematic errors by using exponentially weighted moving average
(EWMA) technique. The EWMA chart provides an additional guidance on setting appropriate criteria to
control the method bias and to support trend analysis. Finally, we present an estimate of measurement
uncertainty by computing the accuracy profile in a retrospective way with the QC data generated and we

plia
discuss assessment of com

. Introduction

Laboratories must be able to produce reliable data when
erforming analytical tests for a customer or for official con-
rol purposes regardless of the methodology used. Consequently,
aboratories should implement an analytical quality assurance
AQA) management program to ensure that high-quality data are
chieved. As defined by Tavernier et al. [1], AQA is a complete set of
easures a laboratory must undertake. It encompasses method val-

dation, estimation of measurement uncertainty, effective internal
uality control (IQC) procedures, participation at relevant profi-
iency testing (PT) schemes and accreditation to an international
tandard, e.g. ISO/IEC 17025. Method validation forms the first level
f an AQA system since an analytical method must first be validated

efore it can be implemented for routine use. Once validated, the
ethod can be used in routine work within the pre-established

ramework. However, a series of measures has to be taken at regu-
ar intervals to ensure the constancy of the results. Specific quality

� This paper is part of a special issue entitled “Method Validation, Comparison
nd Transfer”, guest edited by Serge Rudaz and Philippe Hubert.
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nce with regulatory maximum levels.
© 2009 Elsevier B.V. All rights reserved.

control samples are usually employed to monitor the performance
of the routine method. As defined in the Harmonized Guidelines
for Internal Quality Control in Analytical Chemistry Laboratories:
‘IQC is a set of procedures undertaken by laboratory staff for the
continuous monitoring of operations and the results of measure-
ments in order to decide whether results are reliable enough to be
released.’ [2]. Interpreting reliability can be achieved using any of
several statistical methods. One such well-known statistical tool,
the Shewhart control chart [3], provides a simple plot of the con-
centration measured on a QC material on the y axis against the run
number on the x axis (i.e. time). This decision tool found widespread
application in improving both the quality of manufacturing pro-
cesses and the quality of data released by analytical laboratories.
The univariate Shewhart control chart requires that the IQC results
tend to follow the normal distribution, characterized by a mean
(m) and a standard deviation (s). Different limits are directly calcu-
lated from s. These limits are warning limits (±2s) and control limits
(±3s). The theory, construction and interpretation of the Shewhart
chart are detailed in many papers, books and ISO standards [4–8].
Although the Shewhart chart performs well with respect to long-
term effects from random error monitoring, it lacks the sensitivity
to detect systematic errors. In 1959, Roberts first introduced the
exponentially weighted moving average (EWMA) control scheme
[9]. Using simulation to evaluate its properties, he showed that the

http://www.sciencedirect.com/science/journal/15700232
http://www.elsevier.com/locate/chromb
mailto:g.eppe@ulg.ac.be
dx.doi.org/10.1016/j.jchromb.2009.05.009
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WMA is useful for detecting small shifts in the mean of a pro-
ess. EWMA chart can be easily superposed on Shewhart chart. A
ombined Shewhart-EWMA chart provides protection against both
arge and small shifts in a control process [10].

Modern hyphenated techniques such as gas chromatography
GC)–mass spectrometry (MS) are used to perform multi-
omponents analyses (e.g. pesticides, veterinary drug residues,
nvironmental contaminants). To control multi-residues analysis,
sually multiple Shewhart charts will be used equivalent to the
umber of quality control variables. In the specific case of dioxins,
he monitoring of polychlorinated dibenzo-p-dioxin (PCDDs), poly-
hlorinated dibenzofurans (PCDFs) and dioxin-like polychlorinated
iphenyls (DL-PCBs) in food requires the individual measurement
f 29 analytes when using a congener-specific GC-high resolution
ass spectrometry (HRMS) method. For IQC purposes, it is inap-

ropriate to separately plot them on 29 individual Shewhart charts
nd examining them one at a time. Interpretation based on multi-
le rules, e.g. Westgard rules [11], only works in case of univariate

ndependent control chart. These rules cannot provide any over-
ll interpretation regarding the decision making as a whole. Then,
he final decision would amount to a global rejection of the QC if
ne of the individual control charts exhibits an out-of control situa-
ion. Dioxin laboratories usually overcome the problem by applying
ecision rules only on the toxic equivalent (TEQ) value reported in a
nivariate QC chart, e.g. the sum of PCDD/Fs or the sum of PCDD/Fs
nd DL-PCBs. This simplified approach is considered as necessary to
elease results in the context of official food control [12]; but prob-
bly not sufficient owing to the TEQ value that can overlook several
inors or relevant analytical problems for congeners with low toxic

quivalency factors (TEFs). To improve the effectiveness of IQC pro-
edures, multi-analytes method can be controlled by multivariate
uality control charts. Hotelling introduced multivariate statistical
rocess control and T2 chart in his 1947 pioneer paper [13]. These
tatistics have been widely used in the industry for manufacturing
nd process control purposes. Surprisingly, few applications have
merged in chemical analytical chemistry laboratories. In 1995, the
armonized guidelines for IQC stated that multivariate approach
as still a subject of research and cannot be regarded as sufficiently

stablished for inclusion in their document [2]. Later, Nijhuis et al.
pplied multivariate control charts to a GC analysis of fatty acids in
il [14].

In this paper, we investigate the use of multivariate-EWMA QC
harts to strengthen the IQC of PCDD/Fs and DL-PCBs monitoring in
oodstuffs. We propose warning tools using the T2 chart and EWMA
ontrol limits in addition to the TEQ univariate QC chart. In par-
icular, we consider the issue of the number of runs necessary to
haracterize univariate and T2 charts. Further, we suggest using the
arge quantity of QC data gathered to assess measurement uncer-
ainty (MU). For this purpose, the MU is computed by using the
ccuracy profile in a retrospective way.

. Multivariate quality control charts

.1. Correlation between variables

The existence of correlations between the compounds measured
imultaneously with a single multi-analyte GC-HRMS method is
ften evident by simple visual inspection of the univariate She-
hart charts. To facilitate the graphic representation of data, the

ollowing example is limited to two variables. In Fig. 1, different

ituations (A and B) are given for a 2-dimensional (2D) TEQ data set
omposed of PCDD/Fs and non-ortho (N-O) PCBs results. The uni-
ariate control charts of PCDD/Fs and N-O PCBs are depicted next to
he vertical and horizontal-axis in order to compare the univariate
rocess control and the multivariate approach. In both univariate
Fig. 1. An example of 2-dimensional plot observed for a pair of variables (PCDD/Fs
and N-O PCBs) along with the ellipse determined from the characterization correla-
tion estimates for these two variables.

charts, the red solid lines show the upper and lower control limits
(±3s). These control limits are represented by the dashed square
in 2D. In terms of process control, it would mean that the square
area indicates an in-control situation when the two control charts
are considered individually. The correlation structure between the
two variables modifies the distribution of the data points in the
square. They mainly move along the diagonal axis. The ellipse in
the scatterplot represents the multivariate control limits and the
area inside the ellipse is the true in-control situation. The larger
the correlation between the two variables the more the ellipse is
stretched and deviates from the square. In situation A, the process
is out-of control in a univariate sense for PCDD/Fs fraction but in-
control in the multivariate sense. Such situations can occur because
the univariate approach does not account for the correlation struc-
ture in the data set. The correlation structure is not changed, the
N-O PCBs increase in the same direction as the PCDD/Fs. However,
point A is quite close to the edge of the control ellipse. In situation B,
the reversed is observed. The process is in-control in the univariate
charts while the point B falls outside of the control ellipse in the
multivariate approach. It could be an assignable cause of variation
or a false alarm. In this case, it is caused by an abrupt break in the
correlation between the levels. The mutlivariate control chart takes
into account the correlation between the levels. It is more sensitive
than the univariate approach to data points that depart from the
original correlation structure. A measure that takes into account
multivariate covariance structure was proposed by Hotelling and is
called Hotelling’s T2 [13].

2.2. Hotelling’s T2 chart

The Hotelling’s T2 chart is the most popular tool used to moni-
tor multivariate control process. The T2 distance is a measure that
accounts for the covariance structure of a multivariate normal dis-

tribution. In most application it is assumed that the observations
follow a multivariate normal distribution. When the process is in
control and the in-control true parameter values (mean and covari-
ance) are known, the chi-square distribution can be used. The
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The parameter �, called the smoothing factor, determines the
rate at which ‘older’ data enters into the calculation of the EWMA
statistic. A value of � = 1 implies that only the most recent measure-
Fig. 2. Hotelling T2 chart computed from 2

tatistic plotted on the �2
(p) control chart is given by:

2
(p) = (X − �0)′˙−1

0 (X − �0) (1)

here X is a (p × 1) vector at the nth QC sample, �0 is a (p × 1)
ector of in-control true means of the process and �0 is the (p × p)
ariance-covariance matrix (p = the number of variables). The upper
ontrol limit (UCL) on the chart is �2

˛,p, where �2
˛,p is the (1-˛)th

ercentile point of chi-square distribution with p degrees of free-
om and ˛ is the probability of false alarm. In practice, the process
arameter values are not known, the covariance, mean, and control

imit are estimated from a limited pool of data or from a preliminary
hase when the process is believed to be in control. The unbiased
stimates of the mean X̄ (p × 1) vector and the (p × p) empirical
ovariance matrix S are given by

¯ = 1
n

n∑
i=1

Xi and S = 1
n − 1

n∑
i=1

(Xi − X̄)(Xi − X̄)′ (2)

espectively; n the number of replicates from the pool. For an indi-
idual observation vector X, the T2 control chart is then constructed
y using the following equation:

2 = (X − X̄)′S−1(X − X̄) (3)

The T2 limit plotted on the T2 chart is given by:

CLT2 = p(n2 − 1)
n(n − p)

F˛,(p,n−p) (4)

With F(p,n − p) representing the F distribution with p and (n − p)
egrees of freedom for a suitability chosen ˛·

The data from Section 2.1 can be used to construct the T2 chart
y computing equation (3) and the UCL using equation (4), ˛ = 0.01.
ig. 2 shows the T2 chart, the T2 values are reported on the ver-
ical axis against the observation number on the horizontal axis.
ecause the T2 distance is always a positive number, the T2 chart
nly contains an UCL. The higher the T2, the more distant is the
bservation from the mean. As long as the points plotted on the T2
ontrol chart fall below the UCL, the process is assumed to operate
nder control. When one or more points exceed the UCL, the pro-
ess is deemed out-of-control due to one or special causes and an
nvestigation is carried out to detect these special causes. The main
dvantage is therefore its simplicity to interpret data. However, it
bles: the 17 PCDD/Fs and the 4 N-O PCBs.

is not a panacea. The scale of the value displayed on the chart is not
related to the scale of any monitored variables. It merely provides
an informative value. When T2 exceeds the UCL, the analyst does
not know which particular variable caused the break in the corre-
lation structure between variables. It simply acts as a warning. In
a second step, it requires analysis of individual curves that should
clarify the origin and the nature of the interference.

Neither the univariate Shewhart QC chart nor the multivariate
charts are sensitive to small shifts of the mean of a process (e.g.
1–0.5s). More advanced charts like the cumulative sum (CUSUM)
and the EWMA charts attempt to detect these small shifts. One of
the advantages of the EWMA chart is that it can be easily superposed
on Shewhart QC chart or multivariate QC charts.

2.3. Exponentially weighted moving average (EWMA)

Briefly, EWMA averages the data in a way that gives less and less
weight to data as they are further removed in time from the current
measurement [15].

It is based on the recurrence formula:

EWMAt = �xt + (1 − �)EWMAt−1 for t = 1, 2, . . . , n. (5)

where

• EWMA0 is the mean of historical data (target)
• xt is the observation at time t, in a univariate chart
• n is the number of observations to be monitored including

EWMA0
• 0 < � ≤ 1 is a constant that determines the depth of memory of the

EWMA.
ment influences the EWMA (degrades to Shewhart chart). Thus, a
large value of � gives more weight to recent data and less weight to
older data; a small value of � gives more weight to older data. The
value of � is usually set between 0.2 and 0.3 although this choice is
somewhat arbitrary.
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Fig. 3. Internal quality control charts for PCDD/Fs (A), NO-PCBs (B)

. Experimental

.1. Quality control sample

During the course of routine analysis, a procedural blank and
QC sample are included in each series of real samples. For food-

tuffs, QC sample consisted of purified beef fat fortified with the
7 PCDD/Fs (EPA 1613 stock solution, Wellington Laboratories, BCP
nstruments, Lyon, France). The 12 DL-PCBs are from Dr Ehrenstorfer
Augsburg, Germany, concentration of 100 �g/ml). Each QC batch is
repared as follow: approximately 1 kg of beef fat was transferred

nto a beaker and thawed at 60 ◦C on a magnetic hot plate stirrer. The
at is thoroughly homogenised by stirring at 600 rpm. The 29 target
ompounds are spiked at the following concentrations, expressed
s total TEQ: approximately 0.5× (level 1), 1× (level 2), 1.6× (level
) and 3× (level 4) of the maximum level of 3 pg-TEQ g−1 fat for the
um of PCDD/Fs and 4.5 pg-TEQ g−1 fat for the sum of PCDD/Fs and
L-PCBs) [16]. Only pool 1 and 2 were spiked with all the DL-PCBs at

he maximum level. Pool 3 and 4 are older pools and they contain
nly PCDD/Fs and N-O PCBs. They have been prepared when the
U legislation on DL-PCBs was not yet enforced. The QC material is
omogenized for 24 h. Portions between 4 g and 7 g are bottled in
mber glass vial and stored at −20 ◦C until analysis.

.2. Analytical procedure

The whole congener-specific analytical procedure including
xtraction by pressurized liquid extraction (PLE), Power-Prep sys-
em (Fluid Management Systems, Inc. Waltham, MA) clean-up and
etection by GC-ID-HRMS is exhaustively described elsewhere [17].

.3. Statistical software
Mutlivariate quality control-EWMA charts were implemented
y using the software MultiQC4.0 (http://www.multiQC.com, qual-

ty control software, Metz, France). The e.noval software was used
o get the accuracy profiles as well as to compute the MU associated
ith the analytical method (http://www.arlenda.com, Arlenda,

iège, Belgium).
-O PCBs present in QC beef fat (level 1). (D) The Hotelling T chart.

4. Results and discussion

4.1. Multivariate quality control approach

When using a congener-specific GC-HRMS method, the TEQ
approach requires quantifying individually 29 dioxin-like com-
pounds. Analysts have to accurately quantify the individual
congeners in order to release a reliable TEQ content of a sample.
The IQC approach proposed here consists to pool the 29 toxics con-
geners in 3 groups: the sum of the 17 PCDD/Fs, the sum of the 4
NO-PCBs and the sum of the 8 mono-ortho (MO)-PCBs, all expressed
in TEQ units. There are several reasons for this choice. Firstly, multi-
variate approach requires that all data be observed for all variables
in every run; the proposed sub-groups fulfil this requirement. Sec-
ondly, potential sources of contamination in a laboratory (samples,
reagents, solvents, disposables, glassware, etc.) can be completely
different for PCDD/Fs and PCBs. Thirdly, the M-O PCBs fraction is
collected separately from the PCDD/F and N-O PCB fraction during
the clean-up procedure [17]. Finally, the European Commission has
for a transitional period set separate maximum levels for the sum
of PCDD/F TEQs and for the sum of PCDD/F and DL-PCB TEQs [16].
Foodstuffs must comply with both maximum levels.

The sample preparation method considers two separate frac-
tions requiring two separate injections on the GC-HRMS system.
The TEQ content is calculated using the 1998-World Health Organ-
isation (WHO-TEFs). Fig. 3A–C represents the univariate control
charts for PCDD/Fs, N-O PCBs and M-O PCBs respectively (level 1).
When starting a new QC batch, the QC chart parameters (m, s and
the correlation matrix) are not known and they cannot be reliably
estimated until a reference pool of data has been collected during a
preliminary period. The QC chart can however start in provisional
floating parameters, i.e. each new QC data recorded are used to
recalculate the means (mp), the standard deviations (sp) and the
correlation matrix coefficients, p the number of variables. The cen-
tral green lines define the mp values with the upper and lower ±3sp
control limits drawn in plain (red). There is no observation outside
the ±3sp control limits in univariate control charts. Fig. 3D depicts
the corresponding Hotelling’s T chart. One should note that the soft-
ware used here reports a relative T value (ratio of T/Tlimit) instead of
a T2. Interpretation of data is based on the same rules as defined in

http://www.multiqc.com/
http://www.arlenda.com/
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Table 1
Relative bias, intermediate precision, combined standard uncertainty, expanded standard uncertainty and relative expanded standard uncertainty computed for PCDD/Fs
from 4 levels of QC beef fat test material.

Level Spiked
concentration
pgTEQ g−1 fat

Measured
mean level
pgTEQ g−1 fat

Relative bias (%) Intermediate
precision SD
pg-TEQ g−1 fat

Method bias
uncertainty
pg-TEQ g−1 fat

Combined
uncertainty
pg-TEQ g−1 fat

Expanded
uncertainty
(k = 2)
pg-TEQ g−1 fat

Relative
expanded
uncertainty
(k = 2) (%)

1 1.69 1.61 −4.9 0.163 0.019 0.164 0.327 19.4
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3.04 3.06 0.5 0.225
5.00 4.87 −6.6 0.431

10.75 10.81 0.6 0.910

ection 2.2 but it provides here a unique UCL value of 1. In floating
ode, the first T value requires at least p + 1 data point to be com-

uted. During the first 24 measurements, one can observe the high
orrelation coefficient between PCDD/Fs and N-O PCBs (r12 = 0.958).
he r13 and r23 values are lower than 0.5 between PCDD/Fs and M-O
CBs and between N-O PCBs and M-O PCBs, respectively. The main
eason of low correlation coefficients is related to the separated
C-HRMS injections. The tuning and the calibration are performed

eparately on each instrument. An out-of-control signal is observed
t the 25th data point in Fig. 3D. In such a case, the interpretation
f the T chart is straightforward. It is caused by an abrupt break

n the correlation structure between PCDD/Fs and N-O PCBs. How-
ver, identifying an out-of-control variable from a T2 chart is not
lways as simple, specifically when a large number of variables
re monitored (p > 5). Whenever new data are validated in floating
ode, new averages, standard deviation and correlations between

ariables are re-calculated with an additional degree of freedom.
hus, it gives a r12 value of 0.881 between PCDD/Fs and NO-PCBs
y including the 25th point in the data set. The slight drop in the
orrelation coefficient decreases the sensitivity of the T chart to
etect breaks in the correlation structure between variables. This
xplains why, on several occasions later, some additional points
re not in out-of-control situations (e.g. the 32th, 34th and 39th
oints). Once the 45 data points are validated r12 equals to 0.8 (r13
nd r23 < 0.5). It could be hazardous to keep floating parameters
oo long. One can easily imagine how a slow drift could affect the

ean and the control limits of univariate charts. It is necessary to
ock mp, sp and the correlation coefficients as soon as data from a
table reference period have been collected. One of the key issues
n constructing multivariate charts are therefore to determine the

inimum number of runs needed to correctly assign the working
alues of mp, sp, and the correlation coefficients. For example, if
he first 20 runs were selected to calculate the working values, five
oints (25th, 32th, 34th, 39th and 45th) would have been consid-
red as out-of-control situations on the T chart (Fig. 3). However,
ost of these warnings could be seen as false alarms by visual

nspection of univariate charts. Marquis studied the probability of
alse alarm outside the range [m ±3s] by numerical simulation [18].
e concluded that a preliminary period corresponding to 100 runs

hould be sufficient to guarantee an acceptable range of false alarm
0.06–1%], theoretically 0.27%. He also demonstrated that s is the
redominant factor compared to m that affects the probability of

alse alarm in univariate charts. In such a case, it would mean in
ig. 3 that only half of the necessary runs would have been recorded
o adequately characterize our method. It is clear that increasing
he preliminary period to hundred data points is practically and
conomically unrealistic to apply in contaminants and residues
nalytical laboratories. In specific cases, it is however possible to
olve the problem without any additional costs. Indeed, it is quite

ommon in many analytical disciplines, including dioxin analysis,
o observe that sp is proportional to level as shown in Table 1 where
he intermediate precision is calculated for the sum of PCDD/Fs. It
ollows that relative standard deviations (RSDs) are rather constant
cross the entire concentration range (level 1–4). The RSDs can be
0.028 0.227 0.453 14.9
0.051 0.434 0.868 17.4
0.107 0.916 1.832 17.0

pooled and an estimate of the pooled RSD is obtained using the
following equation:

RSDp,pool =

√(
(np,1 − 1)RSD2

p,1 + (n2 − 1)RSD2
p,2 + . . .

(np,1 − 1) + (np,2 − 1) + . . . .

)
(6)

where RSDp,pool is the RSD pooled for the pth variable, RSDp,1 is the
relative standard deviation of pth variable calculated from the QC
sample at level 1, np,1 is the number of replicates for that QC sample,
etc.

In this study, 4 levels of QC test materials were prepared. By
selecting the number of runs at 25 per level, it provides an estimated
RSDp,pool with 96 degrees of freedom. The control limits of the QC
charts are then constructed with:

[mp,i ± 3 × RSDp,pool × mp,i] (7)

where mp,i is the average of the pth variable at the ith QC level.
Fig. 4 illustrates the 4 levels of QC charts for the PCDD/Fs where the
±3spool control limits are constructed from a RSDpool, 25 runs per
level. The correlation matrix must also be reliably estimated. Each
level of monitoring provides an estimate of the correlation coeffi-
cients. For example, r12 between PCDD/Fs and N-O PCBs equals to
0.88; 0.67; 0.77; 0.74 at levels 1; 2; 3; 4, respectively (25 runs per
level). The higher value at level 1 (Fig. 3) cannot be explained. It
has been observed during 25 runs and this is not a coincidence but
it seems totally artificial. On the light of other r values, a r12 value
of 0.75 reflects a better approximation of the correlation between
PCDD/Fs and N-O PCBs when taking into account the 4 levels of
monitoring.

At this stage, a T chart can be constructed for each level of
monitoring. It requires mp,i, RSDp,pool and the estimated correla-
tion matrix. The QC material is inserted at a frequency of one per
ten routine samples. The level of the QC material is selected on a
random basis. However, it should match as much as possible the
concentration of routine samples. The T value is calculated and
used as a warning. Once a T value is above its UCL, the cause of
a possible problem has to be investigated promptly. The first action
consists to analyse the univariate QC charts of the 3 pooled TEQ
variables to determine which sub-group of the TEQ is incriminated.
The ±3sp decision rule is directly applied to decide whether the
series of routine samples can be released or not. One can note that
a T value above its UCL is not only caused by a break in the correla-
tion structure between the variables, it could also happen when the
3 variables deviates from the mean in the same direction. In that
specific case, the T chart is less sensitive compared to the univariate
QC charts.

Even if the results can be released, the origin of an out-of-
control T value must be found. When a sub-group of the TEQ has
been identified, the analyst can go further by analysing individ-

ual congeners. One or several congeners may be the cause of the
out-of-control situation. The following features should be sought:
high procedural blank level, internal standard recovery rates, GC
peak shape and integration, retention time, isotope ratio, relative
response factors. Based on our experience, most answers to an out-
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ig. 4. Control charts at 4 different levels (1.69 pg-TEQg−1 fat; 3.04 pg-TEQg−1 fat; 5.
ith n = 25 per level, 4 levels of QC.

f-control situation are found in these listed features. However, if
hese actions yield no insight, then further QC material measure-

ents are needed.

.2. Trend analysis

To detect small shifts in QC process and to support trend anal-
sis, EWMA charts can be superposed on univariate QC charts.
igs. 3 and 4 illustrate the EWMA chart by the bold curve and its
ontrol limits (dashed lines, m ±3sEMWA). The smoothing factor �
s set at 0.2 and the relationship between s and sEMWA is expressed
y the following equation:

EWMA = s

√
�

2 − �
(8)

By setting � = 0.2, Equation (8) gives a sEMWA equals to one third
f s. Thus, the control limits of the EWMA curve (dashed lines) rep-
esent a range between ±1s. The EWMA monitoring chart provides
n additional guidance on setting an appropriate criterion to sup-
ort trend analysis: the method bias should lie between the control

imits of ±1s with a � value of 0.2. A significant method bias is

bserved once the bold curve is beyond the dashed control limits
f ±1s. Moreover, the EWMA curves should be randomly distributed
n both sides of the mean indicating that no systematic method bias
as observed during the whole period. For instance, in Fig. 4, the

WMA curves fall within the dashes lines demonstrating that the
TEQg−1 fat; 10.00 pg-TEQg−1 fat, for the sum of the 17 PCDD/Fs). RSDp,pool calculated

method bias does not exceed the RSDpool of 8.8%, except for a short
period of time in level 1. One can observe 2 out of 3 QC data beyond
the control limits of ±3s, leading to an EWMA curve exceeding the
±1s limits. An efficient and appropriate means to evaluate the rele-
vance of the proposed criterion is first to participate in proficiency
tests (PTs) and evaluate the performance your laboratory obtains.
It provides relevant information in terms of trueness assessment of
the analytical method (laboratory and method bias) and it gives you
the opportunity to adapt the degree of stringency of your internal
QC criteria.

4.3. Quality control data and measurement uncertainty

It has already been reported that the use of QC data are an appro-
priate way to evaluate MU [19]. This ‘top-down’ approach takes into
account most of the relevant contributions to MU by performing
long term precision and trueness studies. In the context of contam-
inants in food, strict regulations are enforced in Europe [16]. MU
clearly has implications for interpreting analytical results for com-
pliance with maximum limits. In the specific case of dioxin-like
compounds, measurement is given in TEQs for comparison with
maximum levels, i.e., the uncertainty associated with a measure-

ment must also be stated in TEQs.

The large quantity of data produced by the implementation of
multivariate and multilevel IQC procedures is shrewdly used to
estimate the MU. The study case presented here deals with data
collected for the sum of PCDD/Fs; it can be easily extended to
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L-PCBs. The approach only considers the uncertainty associated
ith the analytical procedure. In particular, it takes into account

he repeatability effects, the intermediate precision effects and the
ethod bias (spiking study). The laboratory bias is not assessed

s it requires a trueness study carried out with certified reference
aterials (CRMs). The uncertainties related to sampling, sample

omogeneity or stability are not discussed here.
There are different ways and manners to estimate MU. A prac-

ical and direct way of using the data collected during in-house
alidation step to estimate MU can be deduced from the accu-
acy profile and the concept of total error [20]. Feinberg et al.
emonstrated that the standard deviation used to compute the �-
xpectation tolerance interval is nothing more than the standard
ombined uncertainty as defined in the ISO/TS 21748 guide [21].
he tolerance interval calculated for each concentration level gives
n estimate of the expanded uncertainty. Considering the multi-
evels QC data gathered for the sum of PCCD/Fs (Fig. 4), the accuracy
rofile is computed in a retrospective way for levels 1 to 4. The inter-
al constructed here is a confidence interval instead of a tolerance
nterval, characterized with a large number of j series (between-
uns) of one replicate. Table 1 gives an overview of the statistical
arameters computed to estimate MU. The relative method bias
aries between −6.6% and 0.6% within the working range and meets
he Commission Regulation criteria, i.e. ±20% [12]. The contribu-
ion of the method bias to the overall uncertainty can be neglected
ompared to the intermediate precision (sR). Indeed, the uncer-
ainty associated with the estimated method bias is proportional
o sR × j−1/2 (n = 1) and tends to be negligible when the number of
etween-runs series increase [21]. The expanded uncertainty (U) is
alculated by using a coverage factor (k) of 2 at 95% level of con-
dence [12]. The relative U for the sum of PCDD/Fs expressed in
EQ varies between 15% and 19% within the working range. When
erforming precision and trueness studies from validation data,
e have already reported relative U between 15% and 24% asso-

iated with the TEQ value for the sum of the PCDD/Fs [22,23]. As
lready mentioned, the estimated MU reported here does not take
nto account the laboratory bias. Previous internal trueness studies

ith matrix match CRMs showed a contribution of the bias uncer-
ainty (laboratory and method bias) between 23% and 65% to the
verall uncertainty budget, giving a contribution between 4% and
6% to the combined standard uncertainty [23].

The expanded uncertainties at the levels 1, 2 and 3 around the
aximum limit of 3 pg-TEQ g−1 are graphically illustrated in Fig. 5.

he limits of ±U at 95% level of confidence are represented by the
sides of the narrow white path and the associated curves indi-

ate the inferred probability density function for the value of the
easurand. The upper and lower limits of U are simply connected

y straight lines in order to interpolate the behaviour of the lim-
ts between the 3 measured levels and to support the graphical
epresentation.

Decision rules are needed in the view of acceptance or rejection
f a sample or a lot. In the specific framework of dioxin control in
oodstuffs, the decision rule implies to subtract the expanded uncer-
ainty (U) from the measurement result (x-U) and compare this
ith the maximum limit [16]. If (x-U) exceeds the maximum limit,

t will result in a decision of non-compliance. On the basis of this
ecision rule, an acceptance and a rejection zone are determined
s shown in Fig. 5. If the measurement result lies in the acceptance
one the product is declared compliant and if in the rejection zone
t is declared non-compliant [24]. Thus, the decision rule for the
CDD/Fs implies to extend the acceptance zone beyond the max-
mum limit, i.e. maximum limit plus U at 95% level of confidence.
t corresponds to the dashed B line in Fig. 5. The region located
etween A and B is usually more complicated for decision-making.
ecision rules may include additional measurements or sharing the

isk between the laboratory and the end-user of the data. The issue
Fig. 5. Graphical display of expanded measurement uncertainty calculated from QC
data at 1.69 pg-TEQg−1 fat (level 1); 3.04 pg-TEQg−1 fat (level 2) and 5.00 pg-TEQg−1

fat (level 3) for the sum of the 17 PCDD/Fs across the maximum limit of 3 pg-TEQg−1

fat.

of compliance assessment within that zone lends itself to debate.
To avoid any discussions and misinterpretation, European dioxin
regulation considers the whole region between A and B as an accep-
tance zone. This decision rule is clearly in favour of food producer’s
interest. It should however be noted that concentrations between
1.5 pg-TEQ g−1 fat (so called action level) and B correspond to a sub-
region within the acceptance zone where actions have to be taken
to identify the source(s) of contamination [25].

5. Conclusions

In this paper, multivariate and multilevel quality control charts
are studied for the analysis of 29 dioxin-like compounds in food-
stuffs by GC-HRMS. We proposed to pool the 29 congeners in 3
groups and to monitor their toxic equivalent values in univariate
charts and multivariate T2 chart. The T2 chart acts as a warning to
trigger further investigations in the data set when a T2 value exceeds
the upper control limit. The ±3s decision rule remains applicable
in univariate charts to release results. One of the criticisms that can
be addressed to the proposed approach is its lack of sensitivity for
the congeners that contribute to a lesser extent to the TEQ value. If
analytical problems occur for those congeners, it is left to the ana-
lyst opinion to decide whether extensive investigations and works
are needed. This decision, however, has to take into account the
method’s fitness-for-purpose requirements.

The EWMA chart provides an additional guidance on setting
appropriate criterion to control the method bias and for trend anal-
ysis. It is a useful tool to support trend analysis according to ISO/IEC
17025 requirements. The number of trends analysis to carry out
during a year depends on the frequency of QC materials used. With
the approach described in this paper, twice a year allows recording
relevant information.

Implementing IQC procedures in a laboratory has a non-
negligible cost in the overall price of analysis. The multilevel QC data
generated for monitoring can be used to estimate measurement
uncertainty across the maximum limits for compliance assessment.
The sources of uncertainty covered by the study must be specified.
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